ChlP-seq Experiments

R. Gentleman
(lots of slides thanks to John Marioni)



Biological Motivation

Chromatin-immunopreciptation followed by
sequencing (ChIP-seq) is a powerful tool
epigenetics

* histone modifications

* methylation

locating transcription factor (TF) DNA
Interactions

detecting what nucleic acid sequences any
protein is interacting with

— ribosomal profiling



Assay Basics

cross-link proteins to DNA or RNA
— usually using formalin

introduce tagged antibody that targets the
protein or entity of interest

enrich the output by selecting for the tagged
protein (immuno-precipitation)

undo cross-linking
purify for either RNA or DNA

sequence — and then process



ChlIP-seq Protocol
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Controls

as for all experiments it is important that relevant
controls be used

— it is not so clear what those are, and at what level
they are useful

commonly used controls:
— input (randomly sheared DNA)
— 1gG or GFP

used to identify anomalies in the genome or
artifacts that might be due to reagents, not
biology

argues for a fairly limited set of controls
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Potential Antibody issues

there are often multiple antibodies for a
particular entity

— for TP53 there are two widely used ones
the antibody might not be specific

you detect direct and indirect interactions
with DNA

cross-linking may occur for spatially proximal
proteins that are bound to DNA very far apart
in the sequence



Analysis Pipeline

QA
map to genome

— is our TF associated with a TE?
— does it like repetitive DNA?

etermine fragment length
etermine foreground/background
eal with control lane (if present)

ecide if we are looking for peaks or sausages
— if a TF do we know the PWM (RE)?

C
C
C
C



Estimating Fragment length

 there are several methods in the literature
— Kharchenko et al is quite good
— Jothi et al is quite bad

e our method:

— choose a lower bound, w, for the mean fragment
length

— shift each negative strand read by an amount u

— compute the total number of bases covered by any
read

— find the value u, .. of u for which the number of
bases covered is a minimum

— estimate the mean lengthbyw +u,_ .
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 comparison of three methods to estimate
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Where did the TF bind?

‘we should get reads from both the + and - strand

‘the reads on the - strand should be upstream of
the binding site

those on the + strand should be downstream

single

binding
site This is the likely/

binding site

multiple
binding
sites

now things are
less clear




Foreground vs Background

* we observe both reads that correspond to

— foreground: they represent the binding we are interested
in

— background:low density reads from throughout the
genome

* we want to separate these two types of signal

— the background varies within a genome and between
individuals
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Observed Data

e we exclude (but ultimately won’t) reads that
map to more than one location

* we exclude reads that map to the same start
location and orientation (since in our setting we
believe that these are likely due to PCR bias)

— depth of sequencing is important

* this forces us to think a bit about the mappable
genome: that part of the genome we could have
mapped to

— so for 36nt reads we want to know how much of the
genome is unique



Peak Calling

null model assumes that reads are distributed
uniformly on the genome (Lander and Waterman)

assumes fragments are length L and let . denote
the probability of a new fragment starting at any
base

then the number of reads per island follows a
Geometric distribution P(N=k) = p*1 (1-p) where
p=1-(1-a)"

we should only use background reads for this

we proposed using islands of size 1 or 2 to
estimate a



Peak Discovery

* given a Poisson model for the background and an
estimate of oo we can develop an algorithm that a
peak of height k is unlikely given the background

* our original data at the Hutch (small-ish sample
sizes) this worked well

* at GNE we found that larger amounts of
sequence caused problems and we are
developing a Negative Binomial model, with
double truncation
— large values are probably foreground
— we see some zero inflation
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Quantifying binding - peak finding

* Good algorithms should:
— |dentify real peaks!

— Estimate confidence (e.g., via calculation of a p-
value)

Huge number of algorithms for peak
calling out there (> 60)



Quantifying binding — peak finding
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Basic idea: Count the number of reads in windows and determine
whether this number is above background — if so, define that region

as bound



Quantifying binding — peak finding

- lisa — e

* (Calling a region as bound can be done in different ways:
* Hard thresholds
« HMMs
* Compare bin counts to a background distribution
determined from the input sample (assuming a Poisson
or Negative Binomial distribution for example)




Quantifying binding — peak finding

* Another feature that some
methods consider is that
reads can be from the plus
or minus strands

* In this case, for a given TF
two peaks will be
observed, separated by a
constant distance, d

* This can be modeled either
post-hoc, or by using
strand specific calls

Wilbanks et al., 2010
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Quantifying binding — peak finding

* However, this 1s only
useful where the protein
being assayed has a sharp,
well defined binding site

* For histone modifications,
with broad and sometimes
shallow peaks, this
information is less useful

Wilbanks et al., 2010

] M/\/‘
Sense ChIP
enrichment

3 5
Antisense
W enrichment

SN\

align to
reference genome

- la_g@
: @antisense lags
d 4

< -~




Quantifying binding — peak finding

* In general, methods have been
developed for 1identifying
regions where TFs bind —
methods for identifying regions
where histone modifications
occur are less mature, although
some approaches (e.g., those
based upon HMMs) may be

useful in this context!»?

1. Xu, 2008
2. http://www.ebi.ac.uk/~swilder/SWEMBL/
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Summary of (some) different peak finders
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i conditional
CisGenome X X X X binomial model
Minimal ChipSeq
Peak Finder 16zt X X X
chromsome scale
E-RANGE| 27 | 3.1 X X X X Poisson dist.
MACS| 13 [1.3.5 X X X X local Poisson dist.
e chromsome scale
QuEST| 14 |23 X X X X Poisson dist.
HPeak| 29 | 1.1 X X X Hidden Markov Model
Sole-Search | 23 | 1 X X X X One sample t-test
conditional
PeakSeq| 21 [1.01 X X X binomial model
SISSRS| 32 | 1.4 X X X
spp package 1117 3
(wtd & mtc) 2 i X X X X X
Generating density Peak Adjustments w. Significance relative to
profiles assignment control data control data

X* = Windows-only GUI or cross-platform command line interface

X** = optional if sufficient data is available to split control data
X' = method exludes putative duplicated regions, no treatment of deletions

Wilbanks et al., 2010



How do methods compare?

* Hard to do, since all methods rely on
particular parameter values and need to be
tuned accordingly to work best

 However, some groups have applied multiple
methods to the same dataset using default
parameters and compared results



How do methods compare?

* Wilbanks et al. compared the performance of

Peak calling program

11 methods for calling binding sites for 3 TFs
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How do methods compare?

* More encouragingly

— Top 1,000 peaks are usually conserved (observed
on previous slide)

— Differences arise when looking for more marginal
peaks

e Some common features
— Control improves performance a lot

— Deeper sequencing improves performance
(only with control)

— Ability to pinpoint peaks is still not very good

Wilbanks et al. 2010



What to do?

* Try several methods and take the
intersection of calls?

* |f biological replicates exist, only consider
peaks called in multiple samples?

e Use confidence measures associated with
each peak in downstream analysis?



What to do?

* Try several methods and take the
intersection of calls?

* |f biological replicates exist, only consider
peaks called in multiple samples?

e Use confidence measures associated with
each peak in downstream analysis?



DE peaks

suppose we have two conditions: Myoblasts and
Myotubes

— potential differences in the genome should be addressed

we want to know which peaks are differentially
expressed (low in one condition and high in the other)

one could use some cut-off in one condition, and then
look for peaks in the other

instead we combine the data into one collection, choose
a fairly relaxed cut-off to define intervals of interest

use of PWM or RE seems like it should work, but results
to date are not strongly positive



DE peaks

 we can then find DE peaks by a number of methods

* aregression approach using DESeq or edgeR seems
like it should work
* normalization is an important problem

— how to deal with different numbers of reads in the
different samples



* the vertical and
horizontal bars are
peaks that were
found in only one
condition

e otherwise points far
from the line are
candidates for DE
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Found our peaks - what next

once we have decided what things are peaks
we next need to try and interpret them

typically that involves putting them in some
form of genomic context

IRanges/rtracklayer etc can help



Peak Summary (cut-off 8)

All Up Down |Ratio
Total 1459708779 | 8861 1.009
Promoter 24887 (1185 |559 0.472
3 4000 |225 274 1.218
Upstream 30983 (1836 |1663 |0.906
Downstream | 30073 |[1795 [1833 [1.021
Gene 78689 (4570 (4738 |1.037




Motif finding

can we detect and understand motifs under the
binding sites and do they differ in different
contexts?

are co-factors or other variables involved?

MEME — now DREME are possible choices

— MEME is low throughput

— DREME is new (I have not tried it)

an essential part of motif finding is to select
an appropriate set of sequences to compare
against

— we try to find something similar, nearby



Myotube peaks vs. Control
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Chromatin conformation

* We have a tendency to think of a chromosome
as a linear entity

* However chromatin 1s folded in highly complex
ways, which can result 1n distant parts of the
chromosome coming into close proximity (e.g.,
enhancer elements and gene promoters)



Chromatin conformation

* Next-generation sequencing techniques (Hi-C) can
enable us to study these interactions genome-wide

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
Hindlll enzyme with biotin
iy /o ‘ % " £
] g

Lieberman-Aiden et al., 2009



Chromatin conformation

* Liberman-Aiden et al., applied this method to a CEU cell line
* They divided the genome into 1Mb windows and counted the
number of reads, m;; that linked window 1 to window |
Hindlll

- Chr14 1

These data can be
represented as a
heatmap (red = lots of
links, white = no links)

Chr 14




Chromatin conformation

* They calculated the average contact probability within each
chromosome and between chromosomes
* This showed that the probability of contact increases with reduced

genomic distance
[t also shows that the probability of inter-chromosomal contact is

small
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Chromatin conformation

* Since the highest contacts are observed for
regions that are located near one another
(artefactual?), Lieberman-Aiden et al.
normalized the data to account for this

Pearson correlation

Calculating the Pearson correlation <
matrix for the normalized data
revealed that each chromosome
could be broken down into two
compartments (regions with lots of
contacts between one another, but
not to other regions) A

Chr14




Chromatin conformation

By correlating the conformation
data with information about
histone modifications, the authors
determined that one of the
compartments was associated with
gene dense and transcribed regions

Chr14
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